254 research outputs found

    Reticular Chemistry in All Dimensions.

    Get PDF

    The Development of Global Science.

    Get PDF
    How do we build research capacity throughout the world and capture the great human potential? To us, the answer is rather straightforward: the time-honored tradition of scientific mentoring must be practiced on a wider scale across borders. Herein, we detail the necessity for expanding mentorship to a global scale and provide several important principles to be considered when designing, planning, and implementing programs and centers of research around the world

    Design and synthesis of an exceptionally stable and highly porous metal-organic framework

    Full text link
    Open metal-organic frameworks are widely regarded as promising materials for applications(1-15) in catalysis, separation, gas storage and molecular recognition. Compared to conventionally used microporous inorganic materials such as zeolites, these organic structures have the potential for more flexible rational design, through control of the architecture and functionalization of the pores. So far, the inability of these open frameworks to support permanent porosity and to avoid collapsing in the absence of guest molecules, such as solvents, has hindered further progress in the field(14,15). Here we report the synthesis of a metal-organic framework which remains crystalline, as evidenced by Xray single-crystal analyses, and stable when fully desolvated and when heated up to 300 degrees C. This synthesis is achieved by borrowing ideas from metal carboxylate cluster chemistry, where an organic dicarboxylate linker is used in a reaction that gives supertetrahedron clusters when capped with monocarboxylates. The rigid and divergent character of the added linker allows the articulation of the dusters into a three-dimensional framework resulting in a structure with higher apparent surface area and pore volume than most porous crystalline zeolites. This simple and potentially universal design strategy is currently being pursued in the synthesis of new phases and composites, and for gas-storage applications.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62847/1/402276a0.pd

    Three‐periodic nets and tilings: regular and quasiregular nets

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/115935/1/S0108767302018494.pd

    Three‐periodic nets and tilings: semiregular nets

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/115982/1/S0108767303017100.pd

    Adsorption Mechanism and Uptake of Methane in Covalent Organic Frameworks: Theory and Experiment

    Get PDF
    We determined the methane (CH_4) uptake (at 298 K and 1 to 100 bar pressure) for a variety of covalent organic frameworks (COFs), including both two-dimensional (COF-1, COF-5, COF-6, COF-8, and COF-10) and three-dimensional (COF-102, COF-103, COF-105, and COF-108) systems. For all COFs, the CH_4 uptake was predicted from grand canonical Monte Carlo (GCMC) simulations based on force fields (FF) developed to fit accurate quantum mechanics (QM) [second order Møller−Plesset (MP2) perturbation theory using doubly polarized quadruple-ζ (QZVPP) basis sets]. This FF was validated by comparison with the equation of state for CH_4 and by comparison with the experimental uptake isotherms at 298 K (reported here for COF-5 and COF-8), which agrees well (within 2% for 1−100 bar) with the GCMC simulations. From our simulations we have been able to observe, for the first time, multilayer formation coexisting with a pore filling mechanism. The best COF in terms of total volume of CH_4 per unit volume COF absorbent is COF-1, which can store 195 v/v at 298 K and 30 bar, exceeding the U.S. Department of Energy target for CH_4 storage of 180 v/v at 298 K and 35 bar. The best COFs on a delivery amount basis (volume adsorbed from 5 to 100 bar) are COF-102 and COF-103 with values of 230 and 234 v(STP: 298 K, 1.01 bar)/v, respectively, making these promising materials for practical methane storage

    Three‐periodic nets and tilings: minimal nets

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/116005/1/S0108767304015442.pd

    Secondary building units, nets and bonding in the chemistry of metal–organic frameworks

    Get PDF
    This critical review presents a comprehensive study of transition-metal carboxylate clusters which may serve as secondary building units (SBUs) towards construction and synthesis of metal–organic frameworks (MOFs). We describe the geometries of 131 SBUs, their connectivity and composition. This contribution presents a comprehensive list of the wide variety of transition-metal carboxylate clusters which may serve as secondary building units (SBUs) in the construction and synthesis of metal–organic frameworks. The SBUs discussed here were obtained from a search of molecules and extended structures archived in the Cambridge Structure Database (CSD, version 5.28, January 2007) which included only crystals containing metal carboxylate linkages (241 references)
    corecore